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The currents induced by arbitrarily strong dc electric fields in plasma and the evolution of electron
distributions have been studied by Fokker-Planck simulations. We find that the electron distributions
evolve distinctly under different fields; especially, the electron distribution is well represented by the sum
of a stationary and drifting Maxwellian at the moderate field. A set of hydrodynamiclike equations, similar
to Spitzer’s but without the weak-field limit, is given for calculating the current. It is more suitable for
application in hybrid particle-in-cell simulations and may extend plasma transport theory in models that
do not employ a kinetic description of the electrons.
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As a basic process, the behavior of plasmas under a dc
electric field has been studied for nearly a century. In the
weak-field limit, it is found that the plasma current is
linearly related to the applied electric field [1] and the
electric conductivity follows the well-known T3=2

e law
[2]. However, the electron dynamics are quite complex
and the observed electric conductivities are usually much
lower than that predicted by Spitzer’s model in the non-
weak fields [3]. Based on some unexamined assumptions,
such as a drifting Maxwellian electron distribution func-
tion (EDF) [4] or a static Maxwellian background EDF [5],
the behavior of electrons in plasmas was studied in electric
fields of arbitrary magnitude. However, the conductivity
based on the drifting Maxwellian EDF assumption is found
about half of Spitzer’s in the weak-field limit [6], and the
static Maxwellian background EDF assumption will in-
duce an artificial cooling that disturbs the understanding
of the actual EDF [7]. To our knowledge, the behavior of
electrons in plasmas under an electric field of arbitrary
strength is still an open problem. This problem is relevant
to many areas of plasma physics and is particularly relevant
to the very topical problem of fast electron transport in the
fast ignition of fusion targets [8], where usually high dc
electric fields as well as return currents are induced as
found in hybrid-particle-in-cell (PIC) simulations [9].
The return currents in turn have strong effects on the fast
electron transport [10]. In such a simulation, proper treat-
ment of the response of background plasma electrons still
needs to be solved.

In this Letter, we study the EDF and the current of
plasmas under a dc electric field with a wide strength range
by a Fokker-Planck code [11], which includes the full
electron-electron (e-e) collision operator. We show that
the behaviors of electrons are distinct under electric fields
with different strengths, and that the EDF is well repre-
sented by the hybrid of a stationary and drifting
Maxwellian at the moderate field. A set of hydrodynamic-

like equations, which can be used as conveniently as
Spitzer’s, is derived for plasma current according to a
detailed knowledge of EDFs from our Fokker-Planck
simulation. Furthermore, it is not restricted by the weak-
field limit and offers much better estimation than Spitzer’s
of the electric field to generate return current during the
fast electron transport in the fast ignition targets.

In the presence of a dc electric field, the evolution of the
EDF in a homogeneous, fully ionized plasma can be de-
scribed by the Fokker-Planck equation [7,11–13]
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e � Cei�f� � Cee�f�; (1)

where E is the applied electric field. Following the note of
Ref. [11], the electron-ion (e-i) collision term Cei�f� and
e-e collision term Cee�f� can be expressed as

 Cei�f� � �rv � ��D
eji
��e�e� � rvfe�; (2)

 Cee�f� � �rv � ��Deje � rvf
e � Fejefe�: (3)

Except that the dc electric field takes the place of the ac
electric field, Eq. (1) is the same as the Fokker-Planck
equation solved in Ref. [11]. Therefore, the numerical
scheme adopted to solve this equation is essentially the
same one presented there.

The terms in Eq. (1) can be divided into two types, the
first type is the diffusion term, including Deje and Deji,
which tends to spread electrons throughout the velocity
space; the second is the friction term, including Feje and
�eE=me, which tends to decelerate or accelerate electrons
[13]. A general knowledge of the magnitudes of these
terms will be helpful for the division of computational
regions for the electric field E and for the comprehension
of the evolution of EDFs in these regions. In Fig. 1, we
show Fejev ,Deje

�� , andDeji
�� as functions of vk at v? � 0 for a

Maxwellian distribution. Notice that Fejev is in units of
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eEc=Zime, D
eje
�� in units of eEcve0=Zime, while Deji

�� is in
units of eEcve0=me, where Ec � meve0�ei=e, �ei �
Zi�eje=v3

e0 � 1=�ei is the e-i collision frequency, and ve0

is the initial thermal velocity. Therefore, the e-e diffusion
and friction terms are comparable to the e-i diffusion term
for Zi � 1. And the e-e collisions may play an important
role in the evolution of EDF for low Zi plasma; however,
there are few papers that treat them self-consistently.

Since the diffusion term Deji
�� is of the magnitude of

0:1eEcve0=m for the main velocity regime, we select
0:01Ec, 0:1Ec, and 1:0Ec for E as measures for weak,
moderate, and strong fields. The EDFs in these cases are
shown in Fig. 2, in which the times are selected to be
unequal in order to keep Et equal for all cases. In order
to reveal the role of e-e collisions, the distributions for
Zi � 1 and Lorentz plasma Zi � 1 are shown in
columns (I) and (II), respectively. We note that electric
fields with different strengths produce distinct electron
distributions. In the weak field, there are almost no shifts
of the centers of EDFs from v � 0 for both Zi � 1 and
Zi � 1. This means in the weak field the e-i collisions
themselves are strong enough to prevent electrons from
being blown away. In the strong field, the EDFs are almost
collectively drifted away from v � 0 for both Zi � 1 and
Zi � 1, and electrons seem to be accelerated freely.

The behaviors of electrons and the EDFs deserve more
attention in the moderate field region. Since the e-e colli-
sions are comparable to the external field for Zi � 1 in this
field, the competition between them is so violent that the
EDF is torn into a highly distorted one as shown in
Fig. 2(b) in column (I). The EDF in this case can be
approximately divided into two components, the first sat-
isfies a stationary Maxwellian distribution and the second a

drifting Maxwellian distribution, and these two distribu-
tions are found to coexist for quite a long time. Actually,
the drifting Maxwellian distribution also coexists with the
stationary Maxwellian distribution in the strong field limit,
but the proportion of the drifting Maxwellian component
and the mean drift velocity increase so fast that the drifting
Maxwellian distribution is basically dominant. The coex-
istence of these two distributions could be illuminated as
follows. The e-e collisions modify themselves following
the time evolution of EDF and then reassemble the drifting
electrons as a new Maxwellian EDF around the drifting
center, while the e-i collisions unweariedly capture the
electrons as a stationary Maxwellian EDF around v � 0.
As shown in Fig. 1, the center of Fejev at t � 50�ei moves to
vk � �2ve0, which is also the center of distorted EDF at
this time as shown in Fig. 2(b) in column (I), and the effect
of Fejev seems to be a backward force for the electrons with
vk >�2ve0 but a forward force for the electrons with
vk <�2ve0. Therefore the drifting electrons can be reas-
sembled around vk � �2ve0 by Fejev not just blown away
by the electric field as shown in Fig. 2(b) in column (II),
where there are no e-e collisions. Actually, the e-e colli-
sions can be considered as restoring forces to keep elec-
trons assembling as a Maxwellian distribution around a
center regardless of the drifting of this center. On the other
hand, the e-i collisions appear more like restoring forces to
keep electrons assembling around v � 0, since ions always
intend to capture electrons by Coulomb force. And the e-i
diffusion term Deji

�� / 1=v is so efficient around v � 0 that
it can compete against the external electric field and then
capture some electrons around v � 0 even in the strong
field as shown in Fig. 2(c) in column (II). But this effect
will be weakened by the e-e collisions, which tend to bring
the ‘‘stragglers’’ back to the drifting Maxwellian distribu-

FIG. 2 (color online). Snapshots of the EDFs under electric
fields of different strengths: (a) 0:01Ec after 500�ei, (b) 0:1Ec
after 50�ei, and (c) 1:0Ec after 5�ei. Column (I) is for plasmas
with Zi � 1 and column (II) for Zi � 1. The EDF is in units of
ne=v

3
e0.

FIG. 1 (color online). Fejev , Deje
�� , and Deji

�� of a Maxwellian
distribution, and Fejev of a Maxwellian distribution affected by an
electric field 0:1Ec at time 50�ei as functions of vk at v? � 0.
Deje
�� is in units of eEcve0=Zime, F

eje
v in units of eEc=Zime, and

Deji
�� in units of eEcve0=me.
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tion as shown in Fig. 2(c) in column (I). Finally, the
distribution is presented by the hybrid of a stationary and
drifting Maxwellian under the common actions of e-e
collisions, e-i collisions, and this moderate field.

As mentioned above, in the moderate field, we can
express the EDF as

 f�v� � �fM�v� � �1� ��fd�v�; (4)

where � is the proportion of the stationary Maxwellian
component, the stationary Maxwellian EDF fM�v� and the
drifting Maxwellian EDF fd�v� are defined by

 fM�v� �
ne

�2�v2
te1�

3=2
exp

�
�

v2

2v2
te1

�
; (5)

 fd�v� �
ne

�2�v2
te2�

3=2
exp

�
�
�v� vd�

2

2v2
te2

�
: (6)

For the Maxwellian component, Spitzer’s electric conduc-
tivity still applies but increases as � / T3=2

e . Therefore, the
current of this component can be calculated as

 JM � ��1� exp��t=�r���0�vte1=ve0�
3E; (7)

where �0 � �E32nee2=
�������
2�
p

me�ei is Spitzer’s conductiv-
ity [2] for initial temperature T0 � mev2

e0, and �r is the
response time defined as the time when the current is 1=e
(here e is Euler’s number) of the final steady value, which
varies from about 3:8�ei for Z � 1 to 7:5�ei for Z � 1.
While the current coming from the drifting Maxwellian
component can be calculated as

 J d � ��1� ��e
Z

vfd�v�dv � ��1� ��enevd: (8)

From Eq. (4), we can calculate the parallel temperature
Tk � me

R
f�v�v2

k
dv and the perpendicular temperature

T? �
1
2me

R
f�v�v2

?dv as

 Tk=me � �v2
te1 � �1� ���v

2
te2 � v

2
d�; (9)

 T?=me � �v2
te1 � �1� ��v

2
te2: (10)

Equations (9) and (10) give

 �1� ��v2
d � �Tk � T?�=me: (11)

It is hard to solve vd from Eq. (11) strictly; however, if
Tk 	 T?, then the drifting Maxwellian will be much more
than the stationary Maxwellian �1� �� 	 �; hence vd ’
��Tk � T?�=me�

1=2. Otherwise, the proportion of the drift-
ing Maxwellian component will be small so the error
coming from approximation vd ’ ��Tk � T?�=me�

1=2

would not affect the total current obviously. Assuming
the drifting Maxwellian EDF and the stationary
Maxwellian EDF have the same thermal velocity, we can
obtain vte1 � vte2 � �T?=me�

1=2 from Eq. (10). For sim-
plicity, we assume that the Maxwellian component � de-
creases with increasing vd as � ’ exp���mev

2
d=T?��,

which is in good agreement with the numerical results.
Finally, we get the solution of the total current as

 

J � �0E
�

1� exp
�
�
t
�r

��
exp

�
�
Tk � T?
T?

��
T?
T0

�
3=2

� nee
�

1� exp
�
�
Tk � T?
T?

���
Tk � T?
me

�
1=2
: (12)

According to the Ohmic heating [4] and the relaxation of
the anisotropic temperature [12,14], the parallel tempera-
ture Tk and the perpendicular T? can be approximately
updated as

 

dTk
dt
� 2JE� 2�ei�veff��Tk � T?�; (13)

 

dT?
dt
� �ei�veff��Tk � T?�; (14)

where �ei�veff� � Zi�eje=v
3
eff is the effective e-i collision

frequency, and veff �
���������������������������������
�T2
k
� 2T2

?�=me

q
. In the weak-field

limit, it satisfies Tk � T? � T, and then the Eqs. (12)–(14)
will degenerate to Spitzer’s model

 J � �0E
�

1� exp
�
�
t
�r

���
T
T0

�
3=2
; (15)

 

dT
dt
�

2

3
JE: (16)

From hydrodynamiclike Eqs. (12)–(14) with the initial
plasma parameters, one can follow the time evolution of
the plasma current under a dc electric field without the
detailed knowledge of the EDF. Although this set of hydro-
dynamiclike equations is deduced in the moderate field, it
works quite well and agrees with the Fokker-Planck nu-
merical results in a wide range of field strengths while the
validity of Spitzer’s model is limited in the weak field as

FIG. 3 (color online). Comparison of the currents calculated
by our hydrodynamiclike Eqs. (12)–(14) (marked as 0.1 H) with
those by Spitzer’s (marked as 0.1 S) and those obtained from the
Fokker-Planck code (marked as 0.1 F) for Zi � 1 under different
electric fields of strengths 0:01Ec, 0:1Ec, and 1:0Ec. Variable Et
is in units of Ec�ei, and J=E is in units of nee2�ei=me.
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shown in Fig. 3. This means this set of hydrodynamiclike
equations is free from the weak-field limit and more suit-
able for applications in hybrid-PIC simulations, and it may
also extend plasma transport theory in models that do not
employ a kinetic description of the electrons.

As an example, we simulate the generation of return
current during the fast electrons transport in the fast igni-
tion scheme. The simulation condition is that a current of
fast electrons Jf � 3:5 GA with a spot radius of 20 �m is
injected into a uniform initial DT plasma with a tempera-
ture of 500 eV and density of 10 g cm�3, which is the low
density region used in Ref. [9]. For the initial plasma
temperature, an electric field of 3:21
 1010 V=m, which
is about 0:1048Ec, is needed to produce a return current at
the same level of the injection current. As shown in Fig. 3,
Spitzer’s model fails to describe the relation between this
moderate electric field and the produced return current.
Figure 4 shows the time evolution of the electric fields
obtained from three different ways: the electric field esti-
mated by Eq. (12) with Tk and T? being updated by the
Fokker-Planck code, the one updated completely by our
hydrodynamiclike Eqs. (12)–(14), and the one updated
completely by Spitzer’s Eqs. (15) and (16). The produced
currents of these electric fields, all obtained from Fokker-
Planck simulations, are also shown in Fig. 4. It is found that
Spitzer’s model underestimates the electric field since it
usually overestimates the conductivity. Therefore the pro-
duced return current of this electric field is smaller than the
injected current. While our hydrodynamiclike equations
give a good estimation of the electric field, which can
produce the return current compensating the beam current
almost completely.

In conclusion, we have shown and explained the distinct
behaviors of electrons under electric fields with different

strengths. Taking into account the full e-e collisions in the
Fokker-Planck simulation, the electrons can be approxi-
mately divided into two groups, with one satisfying a sta-
tionary Maxwellian distribution and another a drifting
Maxwellian distribution in the moderate field. According
to the EDFs, we derive the hydrodynamiclike Eqs. (12)–
(14) to follow the time evolution of plasma current, which
can be used as conveniently as Spitzer’s model but without
the weak-field limit. For fast electron transport in the fast
ignition targets, it is found that the return current obtained
with our hydrodynamiclike Eqs. (12)–(14) can compensate
the beam current almost completely, whereas the one
obtained with Spitzer’s model cannot.
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FIG. 4 (color online). The time evolution of the electric field
estimated by Eq. (12) with Tk and T? being updated by Fokker-
Planck code (marked as EF), the electric field updated by hydro-
dynamiclike Eqs. (12)–(14) (marked as EH), and the electric
field updated by Spitzer’s (marked as ES), as well as the
produced currents of these electric fields as a current of fast
electrons Jf � 3:5 GA with a radius of 20 �m transports into a
uniform plasma with initial temperature of 500 eV and density of
5 g cm�3.
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